MAX materials and MXene materials are new two-dimensional materials which have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in many fields. This is an in depth guide to the properties, applications, and development trends of MAX and MXene materials.
Precisely What is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements in the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the primary group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, the 3 elements of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they are commonly used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.
Properties of MAX material
MAX material is actually a new kind of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, comprising three elements with all the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A refers to the main-group elements, and X means the components of C and N. The MXene material is actually a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. Max Phase material are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the superb physical properties of MAX materials get them to have an array of applications in structural materials. For example, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be used in functional materials. As an example, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. In addition, some MAX materials likewise have better photocatalytic properties, and electrochemical properties may be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which is often used in energy materials. For instance, K4(MP4)(P4) is one from the MAX materials with high ionic conductivity and electrochemical activity, which can be used a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials really are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The surface of MXene materials can communicate with more functional atoms and molecules, along with a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually include the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties like electrical conductivity, magnetism and optics could be realized.
Properties of MXene materials
MXene materials are a new kind of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are widely used in energy storage and conversion. For instance, MXene materials bring electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials could also be used as catalysts in fuel cells to boost the action and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For instance, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For instance, MXene materials can be used gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. Additionally, MXene materials can also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, with the continuous progress of science and technology and also the improving demand for services for applications, the preparation technology, performance optimization, and application regions of MAX and MXene materials is going to be further expanded and improved. The subsequent aspects may become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and methods could be further explored to understand a more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, but there is still room for more optimization. Down the road, the composition, structure, surface treatment as well as other facets of the fabric can be studied and improved thorough to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials have already been commonly used in many fields, but there are still many potential application areas to become explored. Down the road, they can be further expanded, including in artificial intelligence, biomedicine, environmental protection as well as other fields.
To conclude, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in numerous fields. With the continuous progress of technology and science and the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.